文档
  • PyCaret 3.0
  • 开始使用
    • 💻安装
    • 🚀快速入门
    • ⭐教程
    • 📶模块
    • ⚙️数据预处理
      • 数据准备
      • 缩放和转换
      • 特征工程
      • 特征选择
      • 其他设置参数
    • 💡函数
      • 初始化
      • 训练
      • 优化
      • 分析
      • 部署
      • 其他
  • 学习 PYCARET
    • 📖博客
      • 宣布 PyCaret 1.0
      • 宣布 PyCaret 2.0
      • 关于 PyCaret 你不知道的 5 件事
      • 构建并部署你的第一个机器学习 Web 应用
      • 使用 PyCaret 在 Power BI 中构建你自己的 AutoML
      • 在 Google Kubernetes 上部署 ML 管线
      • 在 AWS Fargate 上部署 PyCaret 和 Streamlit
      • 使用 PyCaret 在 Power BI 中进行异常检测
      • 在 Google Kubernetes 上部署 ML 应用
      • 在 GKE 上部署机器学习管线
      • 在 AWS Fargate 上部署机器学习管线
      • 使用 Docker 在云端部署 ML 管线
      • 使用 PyCaret 在 Power BI 中进行聚类分析
      • 使用 ONNX Runtime 在边缘设备上部署 PyCaret 模型
      • GitHub 是你所需过的最好的 AutoML
      • 在 AWS Fargate 上部署 PyCaret 和 Streamlit
      • 使用 PyCaret 和 MLflow 实现简单的 MLOps
      • 使用 PyCaret 在 Power BI 中进行聚类分析
      • 使用 PyCaret 在 Alteryx 中进行机器学习
      • 使用 PyCaret 在 KNIME 中进行机器学习
      • 使用 PyCaret 在 SQL 中进行机器学习 第一部分
      • 使用 PyCaret 在 Power BI 中进行机器学习
      • 使用 PyCaret 在 Tableau 中进行机器学习
      • 使用 PyCaret 进行多个时间序列预测
      • 使用 PyCaret 预测客户流失
      • 使用 PyCaret 预测潜在客户分数(正确方法)
      • 使用 PyCaret 在 Python 中进行 NLP 文本分类
      • 使用 PyCaret 预测潜在客户分数(正确方法)
      • 使用 PyCaret 预测黄金价格暴跌
      • 使用机器学习预测黄金价格
      • PyCaret 2.1 功能总结
      • 使用 PyCaret 将 ML 模型部署到 SQL Server
      • 使用 PyCaret 和 Gradio 加速你的 ML
      • 时间序列 101 - 入门级
      • 使用 PyCaret 进行时间序列异常检测
      • 使用 PyCaret 回归进行时间序列预测
      • 使用 PyCaret 在 Power BI 中进行主题建模
      • 使用 PyCaret 编写和训练自定义 ML 模型
      • 使用 PyCaret 和 Streamlit 构建和部署 ML 应用
      • PyCaret 2.3.6 发布了!看看新特性?
    • 📺视频
    • 🛩️速查表
    • ❓常见问题
    • 👩‍💻示例
  • 重要链接
    • 🛠️发布说明
    • ⚙️API 参考
    • 🙋 讨论
    • 📤问题
    • 许可证
  • 媒体
    • 💻Slack
    • 📺YouTube
    • 🔗LinkedIn
    • 😾GitHub
    • 🔅Stack Overflow
由 GitBook 提供支持
本页内容

这有帮助吗?

  1. 开始使用

模块

PyCaret 支持的机器学习用例

上一页教程下一页数据预处理

最后更新时间 2 年前

这有帮助吗?

在机器学习中,分类是指一种预测建模问题,其中要预测的目标是类别标签。

在机器学习中,回归是指一种预测建模问题,其中要预测的目标是连续变量。

聚类是将总体或数据点分成若干组的任务,使得同一组中的数据点比其他组中的数据点更相似。

异常检测是识别数据中不符合正常模式的数据点。它对于解决许多问题非常有用,包括欺诈检测、医疗诊断等。

时间序列预测是使用统计和建模方法分析时间序列数据以进行预测并为战略决策提供信息的過程。

PyCaret 中包含 ML 数据集的模块。.

📶
API 文档
教程
数据集
了解更多
API 文档
教程
API 文档
教程
API 文档
教程
API 文档
教程
分类
快速入门
回归
快速入门
聚类
快速入门
异常检测
快速入门
时间序列
快速入门